5.11: The F Distribution (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    10351
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\R}{\mathbb{R}}\) \(\newcommand{\N}{\mathbb{N}}\) \(\newcommand{\E}{\mathbb{E}}\) \(\newcommand{\P}{\mathbb{P}}\) \(\newcommand{\var}{\text{var}}\) \(\newcommand{\sd}{\text{sd}}\) \(\newcommand{\skw}{\text{skew}}\) \(\newcommand{\kur}{\text{kurt}}\)

    In this section we will study a distribution that has special importance in statistics. In particular, this distribution arises from ratios of sums of squares when sampling from a normal distribution, and so is important in estimation and in the two-sample normal model and in hypothesis testing in the two-sample normal model.

    Basic Theory

    Definition

    Suppose that \(U\) has the chi-square distribution with \(n \in (0, \infty)\) degrees of freedom, \(V\) has the chi-square distribution with \(d \in (0, \infty)\) degrees of freedom, and that \(U\) and \(V\) are independent. The distribution of \[ X = \frac{U / n}{V / d} \] is the \(F\) distribution with \(n\) degrees of freedom in the numerator and \(d\) degrees of freedom in the denominator.

    The \(F\) distribution was first derived by George Snedecor, and is named in honor of Sir Ronald Fisher. In practice, the parameters \( n \) and \( d \) are usually positive integers, but this is not a mathematical requirement.

    Distribution Functions

    Suppose that \(X\) has the \( F \) distribution with \( n \in (0, \infty) \) degrees of freedom in the numerator and \( d \in (0, \infty) \) degrees of freedom in the denominator. Then \( X \) has a continuous distribution on \( (0, \infty) \) with probability density function \( f \) given by \[ f(x) = \frac{\Gamma(n/2 + d/2)}{\Gamma(n / 2) \Gamma(d / 2)} \frac{n}{d} \frac{[(n/d) x]^{n/2 - 1}}{\left[1 + (n / d) x\right]^{n/2 + d/2}}, \quad x \in (0, \infty) \] where \( \Gamma \) is the gamma function.

    Proof

    The trick, once again, is conditioning. The conditional distribution of \( X \) given \( V = v \in (0, \infty) \) is gamma with shape parameter \( n/2 \) and scale parameter \( 2 d / n v \). Hence the conditional PDF is \[ x \mapsto \frac{1}{\Gamma(n/2) \left(2 d / n v\right)^{n/2}} x^{n/2 - 1} e^{-x(nv /2d)} \] By definition, \( V \) has the chi-square distribution with \( d \) degrees of freedom, and so has PDF \[ v \mapsto \frac{1}{\Gamma(d/2) 2^{d/2}} v^{d/2 - 1} e^{-v/2} \] The joint PDF of \( (X, V) \) is the product of these functions: \[g(x, v) = \frac{1}{\Gamma(n/2) \Gamma(d/2) 2^{(n+d)/2}} \left(\frac{n}{d}\right)^{n/2} x^{n/2 - 1} v^{(n+d)/2 - 1} e^{-v( n x / d + 1)/2}; \quad x, \, v \in (0, \infty)\] The PDF of \( X \) is therefore \[ f(x) = \int_0^\infty g(x, v) \, dv = \frac{1}{\Gamma(n/2) \Gamma(d/2) 2^{(n+d)/2}} \left(\frac{n}{d}\right)^{n/2} x^{n/2 - 1} \int_0^\infty v^{(n+d)/2 - 1} e^{-v( n x / d + 1)/2} \, dv \] Except for the normalizing constant, the integrand in the last integral is the gamma PDF with shape parameter \( (n + d)/2 \) and scale parameter \( 2 d \big/ (n x + d) \). Hence the integral evaluates to \[ \Gamma\left(\frac{n + d}{2}\right) \left(\frac{2 d}{n x + d}\right)^{(n + d)/2} \] Simplifying gives the result.

    Recall that the beta function \( B \) can be written in terms of the gamma function by \[ B(a, b) = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a + b)},\ \quad a, \, b \in (0, \infty) \] Hence the probability density function of the \( F \) distribution above can also be written as \[ f(x) = \frac{1}{B(n/2, d/2)} \frac{n}{d} \frac{[(n/d) x]^{n/2 - 1}}{\left[1 + (n / d) x\right]^{n/2 + d/2}}, \quad x \in (0, \infty) \] When \( n \ge 2 \), the probability density function is defined at \( x = 0 \), so the support interval is \( [0, \infty) \) is this case.

    In the special distribution simulator, select the \(F\) distribution. Vary the parameters with the scroll bars and note the shape of the probability density function. For selected values of the parameters, run the simulation 1000 times and compare the empirical density function to the probability density function.

    Both parameters influence the shape of the \( F \) probability density function, but some of the basic qualitative features depend only on the numerator degrees of freedom. For the remainder of this discussion, let \( f \) denote the \( F \) probability density function with \( n \in (0, \infty) \) degrees of freedom in the numerator and \( d \in (0, \infty) \) degrees of freedom in the denominator.

    Probability density function \( f \) satisfies the following properties:

    1. If \( 0 \lt n \lt 2 \), \( f \) is decreasing with \( f(x) \to \infty \) as \( x \downarrow 0 \).
    2. If \( n = 2 \), \( f \) is decreasing with mode at \( x = 0 \).
    3. If \( n \gt 2 \), \(f\) increases and then decreases, with mode at \(x = \frac{(n - 2) d}{n (d + 2)}\).
    Proof

    These properties follow from standard calculus. The first derivative of \( f \) is \[ f^\prime(x) = \frac{1}{B(n/2, d/2)} \left(\frac{n}{d}\right)^2 \frac{[(n/d)x]^{n/2-2}}{[1 + (n/2)x]^{n/2 + d/2 + 1}} [(n/2 - 1) - (n/d)(d/2 + 1)x], \quad x \in (0, \infty) \]

    Qualitatively, the second order properties of \( f \) also depend only on \( n \), with transitions at \( n = 2 \) and \( n = 4 \).

    For \( n \gt 2 \), define \begin{align} x_1 & = \frac{d}{n} \frac{(n - 2)(d + 4) - \sqrt{2 (n - 2)(d + 4)(n + d)}}{(d + 2)(d + 4)} \\ x_2 & = \frac{d}{n} \frac{(n - 2)(d + 4) + \sqrt{2 (n - 2)(d + 4)(n + d)}}{(d + 1)(d + 4)} \end{align} The probability density function \( f \) satisfies the following properties:

    1. If \( 0 \lt n \le 2 \), \( f \) is concave upward.
    2. If \( 2 \lt n \le 4 \), \( f \) is concave downward and then upward, with inflection point at \( x_2 \).
    3. If \( n \gt 4 \), \( f \) is concave upward, then downward, then upward again, with inflection points at \( x_1 \) and \( x_2 \).
    Proof

    These results follow from standard calculus. The second derivative of \( f \) is \[ f^{\prime\prime}(x) = \frac{1}{B(n/2, d/2)} \left(\frac{n}{d}\right)^3 \frac{[(n/d)x]^{n/2-3}}{[1 + (n/d)x]^{n/2 + d/2 + 2}}\left[(n/2 - 1)(n/2 - 2) - 2 (n/2 - 1)(d/2 + 2) (n/d) x + (d/2 + 1)(d/2 + 2)(n/d)^2 x^2\right], \quad x \in (0, \infty) \]

    The distribution function and the quantile function do not have simple, closed-form representations. Approximate values of these functions can be obtained from the special distribution calculator and from most mathematical and statistical software packages.

    In the special distribution calculator, select the \(F\) distribution. Vary the parameters and note the shape of the probability density function and the distribution function. In each of the following cases, find the median, the first and third quartiles, and the interquartile range.

    1. \(n = 5\), \(d = 5\)
    2. \(n = 5\), \(d = 10\)
    3. \(n = 10\), \(d = 5\)
    4. \(n = 10\), \(d = 10\)

    The general probability density function of the \( F \) distribution is a bit complicated, but it simplifies in a couple of special cases.

    Special cases.

    1. If \( n = 2 \), \[ f(x) = \frac{1}{(1 + 2 x / d)^{1 + d / 2}}, \quad x \in (0, \infty) \]
    2. If \( n = d \in (0, \infty)\), \[ f(x) = \frac{\Gamma(n)}{\Gamma^2(n/2)} \frac{x^{n/2-1}}{(1 + x)^n}, \quad x \in (0, \infty)\]
    3. If \( n = d = 2 \), \[ f(x) = \frac{1}{(1 + x)^2}, \quad x \in (0, \infty) \]
    4. If \( n = d = 1 \), \[ f(x) = \frac{1}{\pi \sqrt{x}(1 + x)}, \quad x \in (0, \infty) \]

    Moments

    The random variable representation in the definition, along with the moments of the chi-square distribution can be used to find the mean, variance, and other moments of the \( F \) distribution. For the remainder of this discussion, suppose that \(X\) has the \(F\) distribution with \(n \in (0, \infty)\) degrees of freedom in the numerator and \(d \in (0, \infty)\) degrees of freedom in the denominator.

    Mean

    1. \(\E(X) = \infty\) if \(0 \lt d \le 2\)
    2. \(\E(X) = \frac{d}{d - 2}\) if \(d \gt 2\)
    Proof

    By independence, \( \E(X) = \frac{d}{n} \E(U) \E\left(V^{-1}\right) \). Recall that \( \E(U) = n \). Similarly if \( d \le 2 \), \( \E\left(V^{-1}\right) = \infty \) while if \( d \gt 2 \), \[ \E\left(V^{-1}\right) = \frac{\Gamma(d/2 - 1)}{2 \Gamma(d/2)} = \frac{1}{d - 2} \]

    Thus, the mean depends only on the degrees of freedom in the denominator.

    Variance

    1. \(\var(X)\) is undefined if \(0 \lt d \le 2\)
    2. \(\var(X) = \infty\) if \(2 \lt d \le 4\)
    3. If \(d \gt 4\) then \[ \var(X) = 2 \left(\frac{d}{d - 2} \right)^2 \frac{n + d - 2}{n (d - 4)} \]
    Proof

    By independence, \( \E\left(X^2\right) = \frac{d^2}{n^2} \E\left(U^2\right) \E\left(V^{-2}\right) \). Recall that \[ E(\left(U^2\right) = 4 \frac{\Gamma(n/2 + 2)}{\Gamma(n/2)} = (n + 2) n \] Similarly if \( d \le 4 \), \( \E\left(V^{-2}\right) = \infty \) while if \( d \gt 4 \), \[ \E\left(V^{-2}\right) = \frac{\Gamma(d/2 - 2)}{4 \Gamma(d/2)} = \frac{1}{(d - 2)(d - 4)} \] Hence \( \E\left(X^2\right) = \infty \) if \( d \le 4 \) while if \( d \gt 4 \), \[ \E\left(X^2\right) = \frac{(n + 2) d^2}{n (d - 2)(d - 4)} \] The results now follow from the previous result on the mean and the computational formula \( \var(X) = \E\left(X^2\right) - \left[\E(X)\right]^2 \).

    In the simulation of the special distribution simulator, select the \(F\) distribution. Vary the parameters with the scroll bar and note the size and location of the mean \( \pm \) standard deviation bar. For selected values of the parameters, run the simulation 1000 times and compare the empirical mean and standard deviation to the distribution mean and standard deviation..

    General moments. For \( k \gt 0 \),

    1. \(\E\left(X^k\right) = \infty\) if \(0 \lt d \le 2 k\)
    2. If \(d \gt 2 k\) then \[ \E\left(X^k\right) = \left( \frac{d}{n} \right)^k \frac{\Gamma(n/2 + k) \, \Gamma(d/2 - k)}{\Gamma(n/2) \Gamma(d/2)} \]
    Proof

    By independence, \( \E\left(X^k\right) = \left(\frac{d}{n}\right)^k \E\left(U^k\right) \E\left(V^{-k}\right) \). Recall that \[ \E\left(U^k\right) = \frac{2^k \Gamma(n/2 + k)}{\Gamma(n/2)} \] On the other hand, \( \E\left(V^{-k}\right) = \infty \) if \( d/2 \le k \) while if \( d/2 \gt k \), \[ \E\left(V^{-k}\right) = \frac{2^{-k} \Gamma(d/2 - k)}{\Gamma(d/2)} \]

    If \( k \in \N \), then using the fundamental identity of the gamma distribution and some algebra, \[ \E\left(X^{k}\right) = \left(\frac{d}{n}\right)^k \frac{n (n + 2) \cdots [n + 2(k - 1)]}{(d - 2)(d - 4) \cdots (d - 2k)} \] From the general moment formula, we can compute the skewness and kurtosis of the \( F \) distribution.

    Skewness and kurtosis

    1. If \( d \gt 6 \), \[ \skw(X) = \frac{(2 n + d - 2) \sqrt{8 (d - 4)}}{(d - 6) \sqrt{n (n + d - 2)}} \]
    2. If \( d \gt 8 \), \[ \kur(X) = 3 + 12 \frac{n (5 d - 22)(n + d - 2) + (d - 4)(d-2)^2}{n(d - 6)(d - 8)(n + d - 2)} \]
    Proof

    These results follow from the formulas for \( \E\left(X^k\right) \) for \( k \in \{1, 2, 3, 4\} \) and the standard computational formulas for skewness and kurtosis.

    Not surprisingly, the \( F \) distribution is positively skewed. Recall that the excess kurtosis is \[ \kur(X) - 3 = 12 \frac{n (5 d - 22)(n + d - 2) + (d - 4)(d-2)^2}{n(d - 6)(d - 8)(n + d - 2)}\]

    In the simulation of the special distribution simulator, select the \(F\) distribution. Vary the parameters with the scroll bar and note the shape of the probability density function in light of the previous results on skewness and kurtosis. For selected values of the parameters, run the simulation 1000 times and compare the empirical density function to the probability density function.

    Relations

    The most important relationship is the one in the definition, between the \( F \) distribution and the chi-square distribution. In addition, the \( F \) distribution is related to several other special distributions.

    Suppose that \(X\) has the \(F\) distribution with \(n \in (0, \infty)\) degrees of freedom in the numerator and \(d \in (0, \infty)\) degrees of freedom in the denominator. Then \(1 / X\) has the \(F\) distribution with \(d\) degrees of freedom in the numerator and \(n\) degrees of freedom in the denominator.

    Proof

    This follows easily from the random variable interpretation in the definition. We can write \[ X = \frac{U/n}{V/d} \] where \( U \) and \( V \) are independent and have chi-square distributions with \( n \) and \( d \) degrees of freedom, respectively. Hence \[ \frac{1}{X} = \frac{V/d}{U/n} \]

    Suppose that \(T\) has the \(t\) distribution with \(n \in (0, \infty)\) degrees of freedom. Then \(X = T^2\) has the \(F\) distribution with 1 degree of freedom in the numerator and \(n\) degrees of freedom in the denominator.

    Proof

    This follows easily from the random variable representations of the \( t \) and \( F \) distributions. We can write \[ T = \frac{Z}{\sqrt{V/n}} \] where \( Z \) has the standard normal distribution, \( V \) has the chi-square distribution with \( n \) degrees of freedom, and \( Z \) and \( V \) are independent. Hence \[ T^2 = \frac{Z^2}{V/n} \] Recall that \( Z^2 \) has the chi-square distribution with 1 degree of freedom.

    Our next relationship is between the \( F \) distribution and the exponential distribution.

    Suppose that \( X \) and \( Y \) are independent random variables, each with the exponential distribution with rate parameter \( r \in (0, \infty) \). Then \(Z = X / Y\). has the \( F \) distribution with \( 2 \) degrees of freedom in both the numerator and denominator.

    Proof

    We first find the distribution function \( F \) of \( Z \) by conditioning on \( X \): \[ F(z) = \P(Z \le z) = \P(Y \ge X / z) = \E\left[\P(Y \ge X / z \mid X)\right] \] But \( \P(Y \ge y) = e^{-r y} \) for \( y \ge 0 \) so \( F(z) = \E\left(e^{-r X / z}\right) \). Also, \( X \) has PDF \( g(x) = r e^{-r x} \) for \( x \ge 0 \) so \[ F(z) = \int_0^\infty e^{- r x / z} r e^{-r x} \, dx = \int_0^\infty r e^{-r x (1 + 1/z)} \, dx = \frac{1}{1 + 1/z} = \frac{z}{1 + z}, \quad z \in (0, \infty) \] Differentiating gives the PDF of \( Z \) \[ f(z) = \frac{1}{(1 + z)^2}, \quad z \in (0, \infty) \] which we recognize as the PDF of the \( F \) distribution with 2 degrees of freedom in the numerator and the denominator.

    A simple transformation can change a variable with the \( F \) distribution into a variable with the beta distribution, and conversely.

    Connections between the \( F \) distribution and the beta distribution.

    1. If \( X \) has the \( F \) distribution with \( n \in (0, \infty) \) degrees of freedom in the numerator and \( d \in (0, \infty) \) degrees of freedom in the denominator, then \[ Y = \frac{(n/d) X}{1 + (n/d) X} \] has the beta distribution with left parameter \( n/2 \) and right parameter \( d/2 \).
    2. If \( Y \) has the beta distribution with left parameter \( a \in (0, \infty) \) and right parameter \( b \in (0, \infty) \) then \[ X = \frac{b Y}{a(1 - Y)} \] has the \( F \) distribution with \( 2 a \) degrees of freedom in the numerator and \( 2 b \) degrees of freedom in the denominator.
    Proof

    The two statements are equivalent and follow from the standard change of variables formula. The function \[ y = \frac{(n/d) x}{1 + (n/d) x} \] maps \( (0, \infty) \) one-to-one onto (0, 1), with inverse \[ x = \frac{d}{n}\frac{y}{1 - y} \] Let \( f \) denote the PDF of the \( F \) distribution with \( n \) degrees of freedom in the numerator and \( d \) degrees of freedom in the denominator, and let \( g \) denote the PDF of the beta distribution with left parameter \( n/2 \) and right parameter \( d/2 \). Then \( f \) and \( g \) are related by

    1. \( g(y) = f(x) \frac{dx}{dy} \)
    2. \( f(x) = g(y) \frac{dy}{dx} \)

    The \( F \) distribution is closely related to the beta prime distribution by a simple scale transformation.

    Connections with the beta prime distributions.

    1. If \( X \) has the \( F \) distribution with \( n \in (0, \infty) \) degrees of freedom in the numerator and \( d \in (0, \infty) \) degrees of freedom in the denominator, then \( Y = \frac{n}{d} X \) has the beta prime distribution with parameters \( n/2 \) and \( d/2 \).
    2. If \( Y \) has the beta prime distribution with parameters \( a \in (0, \infty) \) and \( b \in (0, \infty) \) then \( X = \frac{b}{a} X \) has the \( F \) distribution with \( 2 a \) degrees of the freedom in the numerator and \( 2 b \) degrees of freedom in the denominator.
    Proof

    Let \( f \) denote the PDF of \( X \) and \( g \) the PDF of \( Y \).

    1. By the change of variables formula, \[ g(y) = \frac{d}{n} f\left(\frac{d}{n} y\right), \quad y \in (0, \infty) \] Substituting into the beta \( F \) PDF shows that \( Y \) has the appropriate beta prime distribution.
    2. Again using the change of variables formula, \[ f(x) = \frac{a}{b} g\left(\frac{a}{b} x\right), \quad x \in (0, \infty) \] Substituting into the beta prime PDF shows that \( X \) has the appropriate \( F \) PDF.

    The Non-Central \( F \) Distribution

    The \( F \) distribution can be generalized in a natural way by replacing the ordinary chi-square variable in the numerator in the definition above with a variable having a non-central chi-square distribution. This generalization is important in analysis of variance.

    Suppose that \(U\) has the non-central chi-square distribution with \(n \in (0, \infty) \) degrees of freedom and non-centrality parameter \(\lambda \in [0, \infty)\), \(V\) has the chi-square distribution with \(d \in (0, \infty)\) degrees of freedom, and that \(U\) and \(V\) are independent. The distribution of \[ X = \frac{U / n}{V / d} \] is the non-central \(F\) distribution with \(n\) degrees of freedom in the numerator, \(d\) degrees of freedom in the denominator, and non-centrality parameter \( \lambda \).

    One of the most interesting and important results for the non-central chi-square distribution is that it is a Poisson mixture of ordinary chi-square distributions. This leads to a similar result for the non-central \( F \) distribution.

    Suppose that \( N \) has the Poisson distribution with parameter \( \lambda / 2 \), and that the conditional distribution of \( X \) given \( N \) is the \( F \) distribution with \( N + 2 n \) degrees of freedom in the numerator and \( d \) degrees of freedom in the denominator, where \( \lambda \in [0, \infty) \) and \( n, \, d \in (0, \infty) \). Then \( X \) has the non-central \( F \) distribution with \( n \) degrees of freedom in the numerator, \( d \) degrees of freedom in the denominator, and non-centrality parameter \( \lambda \).

    Proof

    As in the theorem, let \( N \) have the Poisson distribution with parameter \( \lambda / 2 \), and suppose also that the conditional distribution of \( U \) given \( N \) is chi-square with \( n + 2 N \) degrees of freedom, and that \( V \) has the chi-square distribution with \( d \) degrees of freedom and is independent of \( (N, U) \). Let \( X = (U / n) \big/ (V / d) \). Since \( V \) is independent of \( (N, U) \), the variable \( X \) satisfies the condition in the theorem; that is, the conditional distribution of \( X \) given \( N \) is the \( F \) distribution with \( n + 2 N \) degrees of freedom in the numerator and \( d \) degrees of freedom in the denominator. But then also, (unconditionally) \( U \) has the non-central chi-square distribution with \( n \) degrees of freedom in the numerator and non-centrality parameter \( \lambda \), \( V \) has the chi-square distribution with \( d \) degrees of freedom, and \( U \) and \( V \) are independent. So by definition \( X \) has the \( F \) distribution with \( n \) degrees of freedom in the numerator, \( d \) degrees of freedom in the denominator, and non-centrality parameter \( \lambda \).

    From the last result, we can express the probability density function and distribution function of the non-central \( F \) distribution as a series in terms of ordinary \( F \) density and distribution functions. To set up the notation, for \( j, k \in (0, \infty) \) let \( f_{j k} \) be the probability density function and \( F_{j k} \) the distribution function of the \( F \) distribution with \( j \) degrees of freedom in the numerator and \( k \) degrees of freedom in the denominator. For the rest of this discussion, \( \lambda \in [0, \infty) \) and \( n, \, d \in (0, \infty) \) as usual.

    The probability density function \( g \) of the non-central \( F \) distribution with \( n \) degrees of freedom in the numerator, \( d \) degrees of freedom in the denominator, and non-centrality parameter \( \lambda \) is given by \[ g(x) = \sum_{k = 0}^\infty e^{-\lambda / 2} \frac{(\lambda / 2)^k}{k!} f_{n + 2 k, d}(x), \quad x \in (0, \infty) \]

    The distribution function \( G \) of the non-central \( F \) distribution with \( n \) degrees of freedom in the numerator, \( d \) degrees of freedom in the denominator, and non-centrality parameter \( \lambda \) is given by \[ G(x) = \sum_{k = 0}^\infty e^{-\lambda / 2} \frac{(\lambda / 2)^k}{k!} F_{n + 2 k, d}(x), \quad x \in (0, \infty) \]

    5.11: The F Distribution (2024)

    FAQs

    What does the F distribution tell you? ›

    The F distribution is designed for use in situations where we wish to compare two variances, or more than two means, situations for which the χ 2 and the Student's t distributions are not appropriate. We begin by constructing the form of the F density function.

    What is the relationship between the T and F distribution? ›

    The F distribution can be regarded as the equivalent extension of the t distribution when there is more than one variable but small sample sizes. There are numerous ways of introducing this distribution in the literature, which is widely employed in many diverse areas.

    What is the F ratio in distribution? ›

    The distribution used for the hypothesis test is a new one. It is called the F distribution, named after Sir Ronald Fisher, an English statistician. The F statistic is a ratio (a fraction). There are two sets of degrees of freedom; one for the numerator and one for the denominator.

    What is the formula for the F distribution? ›

    The F distribution has the following properties: The mean of the distribution is equal to v2 / ( v2 - 2 ) for v2 > 2. The variance is equal to [ 2 * v22 * ( v1 + v1 - 2 ) ] / [ v1 * ( v2 - 2 )2 * ( v2 - 4 ) ] for v2 > 4.

    What is the significance level of the F distribution? ›

    If the F-test statistic is greater than or equal to 2.92, our results are statistically significant. The probability distribution plot below displays this graphically. The shaded area is the probability of F-values falling within the rejection region of the F-distribution when the null hypothesis is true.

    What does the F ratio tell us? ›

    The F-ratio is defined as the ratio of the between group variance (MSB) to the within group variance (MSW). F = between group variance / within group variance = MSB / MSW. The calculated F-ratio can be compared to a table of critical F-ratios to determine if there are actually any differences between groups or not.

    What does the t-distribution tell us? ›

    The t-distribution describes the standardized distances of sample means to the population mean when the population standard deviation is not known, and the observations come from a normally distributed population.

    When to use t-distribution vs F distribution? ›

    The t-test is used to compare the means of two groups and determine if they are significantly different, while the F-test is used to compare variances of two or more groups and assess if they are significantly different.

    What are the T values and F values? ›

    In summary, the t-statistic is used for comparing two groups, while the F-statistic is used for comparing three or more groups. Both statistics help assess the significance of differences between group means, with the t-statistic used in t-tests and the F-statistic used in ANOVA.

    Is a high F ratio good or bad? ›

    You'll see a large F ratio both when the null hypothesis is wrong (the data are not sampled from populations with the same mean) and when random sampling happened to end up with large values in some groups and small values in others.

    What is the interpretation of the F value? ›

    If the F value is smaller than the critical value in the F table, then the model is not significant. If the F value is larger, then the model is significant. Remember that the statistical meaning of significant is slightly different from its everyday usage.

    What is F in normal distribution? ›

    Standard Normal Distribution

    Let X be a continuous random variable. Then X takes on a standard normal distribution if its probability density function is f(x)=1√2πexp(−12x2). f ( x ) = 1 2 π e x p ( − 1 2 x 2 ) .

    What is an example of the F-distribution in real life? ›

    The F-distribution has numerous real-world applications. For example, it is used in finance to test whether the variances of stock returns are equal across two or more portfolios. It is also used in engineering to test the effectiveness of different manufacturing processes by comparing the variances of the outcomes.

    What is the limit of the F-distribution? ›

    The F distribution is an asymmetric distribution that has a minimum value of 0, but no maximum value. The curve reaches a peak not far to the right of 0, and then gradually approaches the horizontal axis the larger the F value is. The F distribution approaches, but never quite touches the horizontal axis.

    What does the F-distribution always range from? ›

    The F-distribution curve is positively skewed towards the right with a range of 0 and ∞. The value of F is always positive or zero. No negative values. The shape of the distribution depends on the degrees of freedom of numerator ϑ1 and denominator ϑ2.

    How do you interpret F results? ›

    Result of the F Test (Decided Using F Directly)

    If the F value is smaller than the critical value in the F table, then the model is not significant. If the F value is larger, then the model is significant. Remember that the statistical meaning of significant is slightly different from its everyday usage.

    What does the F-test tell you in statistics? ›

    An F-test is any statistical test used to compare the variances of two samples or the ratio of variances between multiple samples. The test statistic, random variable F, is used to determine if the tested data has an F-distribution under the true null hypothesis, and true customary assumptions about the error term (ε).

    What is the conclusion of the F-distribution? ›

    If the F statistic is larger than the critical value from the F distribution, the null hypothesis is rejected and it can be concluded that there is a significant difference between the means of the groups.

    How do you interpret the F-test results in Excel? ›

    Interpreting the F-test results

    Basically, Excel uses the degrees of freedom (df) for the two groups, as well as the previously selected alpha level, to work out the F Critical value. By comparing the F-value to the F Critical value, we can determine the p-value.

    Top Articles
    Latest Posts
    Article information

    Author: Jerrold Considine

    Last Updated:

    Views: 6152

    Rating: 4.8 / 5 (78 voted)

    Reviews: 85% of readers found this page helpful

    Author information

    Name: Jerrold Considine

    Birthday: 1993-11-03

    Address: Suite 447 3463 Marybelle Circles, New Marlin, AL 20765

    Phone: +5816749283868

    Job: Sales Executive

    Hobby: Air sports, Sand art, Electronics, LARPing, Baseball, Book restoration, Puzzles

    Introduction: My name is Jerrold Considine, I am a combative, cheerful, encouraging, happy, enthusiastic, funny, kind person who loves writing and wants to share my knowledge and understanding with you.