13.2 The F Distribution and the F-Ratio - Introductory Statistics 2e | OpenStax (2024)

The distribution used for the hypothesis test is a new one. It is called the F distribution, named after Sir Ronald Fisher, an English statistician. The F statistic is a ratio (a fraction). There are two sets of degrees of freedom; one for the numerator and one for the denominator.

For example, if F follows an F distribution and the number of degrees of freedom for the numerator is four, and the number of degrees of freedom for the denominator is ten, then F ~ F4,10.

NOTE

The F distribution is derived from the Student's t-distribution. The values of the F distribution are squares of the corresponding values of the t-distribution. One-Way ANOVA expands the t-test for comparing more than two groups. The scope of that derivation is beyond the level of this course. It is preferable to use ANOVA when there are more than two groups instead of performing pairwise t-tests because performing multiple tests introduces the likelihood of making a Type 1 error.

To calculate the F ratio, two estimates of the variance are made.

  1. Variance between samples: An estimate of σ2 that is the variance of the sample means multiplied by n (when the sample sizes are the same.). If the samples are different sizes, the variance between samples is weighted to account for the different sample sizes. The variance is also called variation due to treatment or explained variation.
  2. Variance within samples: An estimate of σ2 that is the average of the sample variances (also known as a pooled variance). When the sample sizes are different, the variance within samples is weighted. The variance is also called the variation due to error or unexplained variation.
  • SSbetween = the sum of squares that represents the variation among the different samples
  • SSwithin = the sum of squares that represents the variation within samples that is due to chance.

To find a "sum of squares" means to add together squared quantities that, in somecases, may be weighted. We used sum of squares to calculate the sample variance andthe sample standard deviation in Descriptive Statistics.

MS means "mean square." MSbetween is the variance between groups, and MSwithin is the variance within groups.

Calculation of Sum of Squares and Mean Square

  • k = the number of different groups
  • nj = the size of the jth group
  • sj = the sum of the values in the jth group
  • n = total number of all the values combined (totalsamplesize: ∑nj)
  • x = one value: ∑x = ∑sj
  • Sum of squares of all values from every group combined: ∑x2
  • Between group variability: SStotal = ∑x2( x2)n( x2)n
  • Total sum of squares: ∑x2(x)2n(x)2n
  • Explained variation: sum of squares representing variation among the different samples: SSbetween = [ (sj)2nj ](sj)2n[ (sj)2nj ](sj)2n
  • Unexplained variation: sum of squares representing variation within samples due to chance: SSwithin=SStotalSSbetweenSSwithin=SStotalSSbetween
  • df's for different groups (df's for the numerator): df = k – 1
  • Equation for errors within samples (df's for the denominator): dfwithin = nk
  • Mean square (variance estimate) explained by the different groups: MSbetween = SSbetweendfbetweenSSbetweendfbetween
  • Mean square (variance estimate) that is due to chance (unexplained): MSwithin = SSwithindfwithinSSwithindfwithin

MSbetween and MSwithin can be written as follows:

  • MSbetween=SSbetweendfbetween=SSbetweenk1MSbetween=SSbetweendfbetween=SSbetweenk1
  • MSwithin=SSwithindfwithin=SSwithinnkMSwithin=SSwithindfwithin=SSwithinnk

The one-way ANOVA test depends on the fact that MSbetween can be influenced by population differences among means of the several groups. Since MSwithin compares values of each group to its own group mean, the fact that group means might be different does not affect MSwithin.

The null hypothesis says that all groups are samples from populations having the same normal distribution. The alternate hypothesis says that at least two of the sample groups come from populations with different normal distributions. If the null hypothesis is true, MSbetween and MSwithin should both estimate the same value.

NOTE

The null hypothesis says that all the group population means are equal. The hypothesis of equal means implies that the populations have the same normal distribution, because it is assumed that the populations are normal and that they have equal variances.

F-Ratio or F Statistic F=MSbetweenMSwithinF=MSbetweenMSwithin

If MSbetween and MSwithin estimate the same value (following the belief that H0 is true), then the F-ratio should be approximately equal to one. Mostly, just sampling errors would contribute to variations away from one. As it turns out, MSbetween consists of the population variance plus a variance produced from the differences between the samples. MSwithin is an estimate of the population variance. Since variances are always positive, if the null hypothesis is false, MSbetween will generally be larger than MSwithin.Then the F-ratio will be larger than one. However, if the population effect is small, it is not unlikely that MSwithin will be larger in a given sample.

The foregoing calculations were done with groups of different sizes. If the groups are the same size, the calculations simplify somewhat and the F-ratio can be written as:

F-Ratio Formula when the groups are the same size F=nsx¯2s2pooledF=nsx¯2s2pooled

where ...

  • n = the sample size
  • dfnumerator = k – 1
  • dfdenominator = nk
  • s2 pooled = the mean of the sample variances (pooled variance)
  • sx¯2sx¯2 = the variance of the sample means

Data are typically put into a table for easy viewing. One-Way ANOVA results are often displayed in this manner by computer software.

Source of VariationSum of Squares (SS)Degrees of Freedom (df)Mean Square (MS)F
Factor
(Between)
SS(Factor)k – 1MS(Factor) = SS(Factor)/(k – 1)F = MS(Factor)/MS(Error)
Error
(Within)
SS(Error)nkMS(Error) = SS(Error)/(nk)
TotalSS(Total)n – 1

Table 13.1

Example 13.1

Three different diet plans are to be tested for mean weight loss. The entries in the table are the weight losses for the different plans. The one-way ANOVA results are shown in Table 13.2.

Plan 1: n1 = 4Plan 2: n2 = 3Plan 3: n3 = 3
53.58
4.574
43.5
34.5

Table 13.2

s1 = 16.5, s2 =15, s3 = 15.5

Following are the calculations needed to fill in the one-way ANOVA table. The table is used to conduct a hypothesis test.

SS(between)=[ (sj)2nj ](sj)2nSS(between)=[ (sj)2nj ](sj)2n

=s124+s223+s323(s1+s2+s3)210=s124+s223+s323(s1+s2+s3)210

where n1 = 4, n2 = 3, n3 = 3 and n = n1 + n2 + n3 = 10

=(16.5)24+(15)23+(15.5)23(16.5+15+15.5)210=(16.5)24+(15)23+(15.5)23(16.5+15+15.5)210

SS(between)=2.2458SS(between)=2.2458

S(total)=x2(x)2nS(total)=x2(x)2n

=(52+4.52+42+32+3.52+72+4.52+82+42+3.52)=(52+4.52+42+32+3.52+72+4.52+82+42+3.52)

(5+4.5+4+3+3.5+7+4.5+8+4+3.5)210(5+4.5+4+3+3.5+7+4.5+8+4+3.5)210

=24447210=244220.9=24447210=244220.9

SS(total)=23.1SS(total)=23.1

SS(within)=SS(total)SS(between)SS(within)=SS(total)SS(between)

=23.12.2458=23.12.2458

SS(within)=20.8542SS(within)=20.8542

Using the TI-83, 83+, 84, 84+ Calculator

One-Way ANOVA Table: The formulas for SS(Total), SS(Factor) = SS(Between) and SS(Error) = SS(Within) as shown previously. The same information is provided by the TI calculator hypothesis test function ANOVA in STAT TESTS (syntax is ANOVA(L1, L2, L3) where L1, L2, L3 have the data from Plan 1, Plan 2, Plan 3 respectively).

Source of VariationSum of Squares (SS)Degrees of Freedom (df)Mean Square (MS)F
Factor
(Between)
SS(Factor)
= SS(Between)
= 2.2458
k – 1
= 3 groups – 1
= 2
MS(Factor)
= SS(Factor)/(k – 1)
= 2.2458/2
= 1.1229
F =
MS(Factor)/MS(Error)
= 1.1229/2.9792
= 0.3769
Error
(Within)
SS(Error)
= SS(Within)
= 20.8542
nk
= 10 total data – 3 groups
= 7
MS(Error)
= SS(Error)/(nk)
= 20.8542/7
= 2.9792
TotalSS(Total)
= 2.2458 + 20.8542
= 23.1
n – 1
= 10 total data – 1
= 9

Table 13.3

Try It 13.1

As part of an experiment to see how different types of soil cover would affect slicing tomato production, Marist College students grew tomato plants under different soil cover conditions. Groups of three plants each had one of the following treatments

  • bare soil
  • a commercial ground cover
  • black plastic
  • straw
  • compost

All plants grew under the same conditions and were the same variety. Students recorded the weight (in grams) of tomatoes produced by each of the n = 15 plants:

Bare: n1 = 3Ground Cover: n2 = 3Plastic: n3 = 3Straw: n4 = 3 Compost: n5 = 3
2,6255,3486,5837,2856,277
2,9975,6828,5606,8977,818
4,9155,4823,8309,2308,677

Table 13.4


Create the one-way ANOVA table.

The one-way ANOVA hypothesis test is always right-tailed because larger F-values are way out in the right tail of the F-distribution curve and tend to make us reject H0.

Notation

The notation for the F distribution is F ~ Fdf(num),df(denom)

where df(num) = dfbetween and df(denom) = dfwithin

The mean for the F distribution is μ=df(denom)df(denom)2μ=df(denom)df(denom)2

13.2 The F Distribution and the F-Ratio - Introductory Statistics 2e | OpenStax (2024)

FAQs

What is the F ratio and the F distribution? ›

The distribution used for the hypothesis test is a new one. It is called the F distribution, invented by George Snedecor but named in honor of Sir Ronald Fisher, an English statistician. The F statistic is a ratio (a fraction). There are two sets of degrees of freedom; one for the numerator and one for the denominator.

How do you calculate the F ratio? ›

Lesson Summary. We use an F-ratio ANOVA to compare data points that are in three or more groups. We calculate the F-ratio by dividing the Mean of Squares Between (MSB) by the Mean of Squares Within (MSW). The calculated F-ratio is then compared to the F-value obtained from an F-table with the corresponding alpha.

What does the F-test F ratio measure? ›

F-tests are named after its test statistic, F, which was named in honor of Sir Ronald Fisher. The F-statistic is simply a ratio of two variances. Variances are a measure of dispersion, or how far the data are scattered from the mean. Larger values represent greater dispersion.

How is F distribution calculated? ›

Let V and W be independent chi-square random variables with ν1 and ν2 d.f., respectively. Then, the ratio F = ( V / υ 1 ) / ( W / υ 2 ) is an F distribution with ν1 d.f. in the numerator and ν2 d.f. in the denominator. It is usually abbreviated as F ν 1 , ν 2 .

What does F ratio tell us in regression? ›

The F-ratio, which follows the F-distribution, is the test statistic to assess the statistical significance of the overall model. It tests the hypothesis that the variation explained by regression model is more than the variation explained by the average value (ȳ).

What is a good F ratio value? ›

F-Ratio or F Statistic

MSbetween and MSwithin estimate the same value (following the belief that H0 is true), then the F-ratio should be approximately equal to one. Mostly, just sampling errors would contribute to variations away from one.

What is the formula for the F statistic? ›

The formula to calculate the F-statistic, or F-value, is: F = σ 1 σ 2 , or Variance 1/Variance 2. In order to accommodate the skewed right shape of the F-distribution, the larger variance is placed in the numerator and the smaller variance is used in the denominator.

How is F ratio written? ›

The F ratio statistic has a numerator and denominator degrees of freedom. Thus, you report: F (numerator_df, denominator_df) = F_value, p = ..., effect size = ...

How to calculate f ratio in two-way ANOVA? ›

F ratio. Each F ratio is computed by dividing the MS value by another MS value. The MS value for the denominator depends on the experimental design. For two-way ANOVA with no repeated measures: The denominator MS value is always the MSresidual.

What does the F-statistic tell you? ›

The F statistic just compares the joint effect of all the variables together. To put it simply, reject the null hypothesis only if your alpha level is larger than your p value. Caution: If you are running an F Test in Excel, make sure your variance 1 is smaller than variance 2.

Is F ratio the same as test statistic? ›

An F-value is the ratio of two variances, or technically, two mean squares. Mean squares are simply variances that account for the degrees of freedom (DF) used to estimate the variance. F-values are the test statistic for F-tests.

How to calculate F ratio? ›

The formula reads: F equals the Mean Square of the between group divided by the Mean Square of the within group.

What is the F ratio in distribution? ›

The distribution used for the hypothesis test is a new one. It is called the F distribution, named after Sir Ronald Fisher, an English statistician. The F statistic is a ratio (a fraction). There are two sets of degrees of freedom; one for the numerator and one for the denominator.

What is F-distribution called? ›

The F-distribution, also known as the Fisher-Snedecor distribution, is a continuous probability distribution that is often used in hypothesis testing and analysis of variance (ANOVA). It is typically used to compare the variability of two population samples or to determine whether two population variances are equal.

What is the sampling distribution of F ratio? ›

The F-distribution is the sampling distribution of the ratio of the variances of two samples drawn from a normal population. It is used directly to test to see if two samples come from populations with the same variance.

What does F mean in probability distribution? ›

The probability distribution is described by the cumulative distribution function F(x), which is the probability of random variable X to get value smaller than or equal to x: F(x) = P(X ≤ x)

What is the F-distribution related to? ›

The F-distribution is closely related to the chi-square distribution and the t-distribution. The chi-square distribution is used in hypothesis testing and confidence intervals for the variance of a single population.

What is the difference between F-test and F statistic? ›

The term F-test is based on the fact that these tests use the F-values to test the hypotheses. An F-statistic is the ratio of two variances and it was named after Sir Ronald Fisher. Variances measure the dispersal of the data points around the mean.

Top Articles
Latest Posts
Article information

Author: Dan Stracke

Last Updated:

Views: 6162

Rating: 4.2 / 5 (43 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Dan Stracke

Birthday: 1992-08-25

Address: 2253 Brown Springs, East Alla, OH 38634-0309

Phone: +398735162064

Job: Investor Government Associate

Hobby: Shopping, LARPing, Scrapbooking, Surfing, Slacklining, Dance, Glassblowing

Introduction: My name is Dan Stracke, I am a homely, gleaming, glamorous, inquisitive, homely, gorgeous, light person who loves writing and wants to share my knowledge and understanding with you.