An imaging reporter-based strategy to monitor microglia polarisation after stroke in real-time (2024)

Related Papers

Individual in vivo Profiles of Microglia Polarization After Stroke, Represented by the Genes iNOS and Ym1

Franziska Collmann

View PDF

Theranostics

Identification of new molecular targets for PET imaging of the microglial anti-inflammatory activation state

2018 •

Anna Planas

View PDF

Journal of Neuroscience Research

Measurement of brain microglial proliferation rates in vivo in response to neuroinflammatory stimuli: Application to drug discovery

2007 •

Mahalakshmi Shankaran

Microglial activation is emerging as an important etiologic factor and therapeutic target in neurodegenerative and neuroinflammatory diseases. Techniques have been lacking, however, for measuring the different components of microglial activation independently in vivo. We describe a method for measuring microglial proliferation rates in vivo using heavy water (2H2O) labeling, and its application in screening for drugs that suppress neuro-inflammation. Brain microglia were isolated by flow cytometry as F4/80+, CD11b+, CD45low cells, and 2H enrichment in DNA was analyzed by gas chromatography/mass spectrometry. Basal proliferation rate was ∼1%/week and systemic administration of bacterial lipopolysaccharide (LPS) markedly increased this rate in a dose-dependent manner. Induction of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice by MOG35–55 peptide stimulated proliferation of CD45low microglia, which could be distinguished from the proliferation of CD45high infiltrating monocytes. Minocycline (45 mg/kg/day, i.p.) inhibited resident microglial proliferation in both the LPS and EAE models. Thirteen drugs were then screened for their ability to inhibit LPS-stimulated microglia proliferation. Female C57BL/6 mice were given LPS (1 mg/kg), and concomitant drug treatment while receiving 2H2O label for 7 days. Among the drugs screened, treatment with isotretinoin dose-dependently reduced LPS-induced microglial proliferation, representing an action of retinoids unknown previously. Follow-up studies in the EAE model confirmed that isotretinoin not only inhibited proliferation of microglia but also delayed the onset of clinical symptoms. In conclusion, 2H2O labeling represents a relatively high-throughput, quantitative, and highly reproducible technique for measuring microglial proliferation, and is useful for screening and discovering novel anti-neuroinflammatory drugs. © 2007 Wiley-Liss, Inc.

View PDF

Acta Neuropathol

Distinguishing features of microglia-and monocyte-derived macrophages after stroke

2018 •

Friederike Klempin

After stroke, macrophages in the ischemic brain may be derived from either resident microglia or infiltrating monocytes. Using bone marrow (BM)-chimerism and dual-reporter transgenic fate mapping, we here set out to delimit the responses of either cell type to mild brain ischemia in a mouse model of 30 min transient middle cerebral artery occlusion (MCAo). A discriminatory analysis of gene expression at 7 days post-event yielded 472 transcripts predominantly or exclusively expressed in blood-derived macrophages as well as 970 transcripts for microglia. The differentially regulated genes were further collated with oligodendrocyte, astrocyte, and neuron transcriptomes, resulting in a dataset of microglia-and monocyte-specific genes in the ischemic brain. Functional categories significantly enriched in monocytes included migration, proliferation, and calcium signaling, indicative of strong activation. Whole-cell patch-clamp analysis further confirmed this highly activated state by demonstrating delayed outward K + currents selectively in invading cells. Although both cell types displayed a mixture of known phenotypes pointing to the significance of 'intermediate states' in vivo, blood-derived macrophages were generally more skewed toward an M2 neuroprotective phenotype. Finally, we found that decreased engraftment of blood-borne cells in the ischemic brain of chimeras reconstituted with BM from Selplg −/− mice resulted in increased lesions at 7 days and worse post-stroke sensorimotor performance. In aggregate, our study establishes crucial differences in activation state between resident microglia and invading macrophages after stroke and identifies unique genomic signatures for either cell type.

View PDF

Therapeutic Advances in Neurological Disorders

Inflammatory molecules might become both biomarkers and therapeutic targets for stroke management

2018 •

Alba Simats

View PDF

International Journal of Molecular Sciences

Complex Roles of Microglial Cells in Ischemic Stroke Pathobiology: New Insights and Future Directions

2017 •

Revathy Guruswamy

View PDF

BioMed research international

Therapeutically targeting neuroinflammation and microglia after acute ischemic stroke

2014 •

Hong Jun Lee

Inflammation has a pivotal role in the pathogenesis of ischemic stroke, and recent studies posit that inflammation acts as a double-edged sword, not only detrimentally augmenting secondary injury, but also potentially promoting recovery. An initial event of inflammation in ischemic stroke is the activation of microglia, leading to production of both pro- and anti-inflammatory mediators acting through multiple receptor signaling pathways. In this review, we discuss the role of microglial mediators in acute ischemic stroke and elaborate on preclinical and clinical studies focused on microglia in stroke models. Understanding how microglia can lead to both pro- and anti-inflammatory responses may be essential to implement therapeutic strategies using immunomodulatory interventions in ischemic stroke.

View PDF

Cells

Cross-Talk and Subset Control of Microglia and Associated Myeloid Cells in Neurological Disorders

Eman Soliman

Neurological disorders are highly prevalent and often lead to chronic debilitating disease. Neuroinflammation is a major driver across the spectrum of disorders, and microglia are key mediators of this response, gaining wide acceptance as a druggable cell target. Moreover, clinical providers have limited ability to objectively quantify patient-specific changes in microglia status, which can be a predictor of illness and recovery. This necessitates the development of diagnostic biomarkers and imaging techniques to monitor microglia-mediated neuroinflammation in coordination with neurological outcomes. New insights into the polarization status of microglia have shed light on the regulation of disease progression and helped identify a modifiable target for therapeutics. Thus, the detection and monitoring of microglia activation through the inclusion of diagnostic biomarkers and imaging techniques will provide clinical tools to aid our understanding of the neurologic sequelae and improv...

View PDF

Biomedical Optics Express

In vivo imaging of activated microglia in a mouse model of focal cerebral ischemia by two-photon microscopy

2015 •

G Ahn

View PDF

Frontiers in Cellular Neuroscience

Automated Morphological Analysis of Microglia After Stroke

Steffanie Heindl

View PDF
An imaging reporter-based strategy to monitor microglia polarisation after stroke in real-time (2024)
Top Articles
Latest Posts
Article information

Author: Golda Nolan II

Last Updated:

Views: 5581

Rating: 4.8 / 5 (58 voted)

Reviews: 81% of readers found this page helpful

Author information

Name: Golda Nolan II

Birthday: 1998-05-14

Address: Suite 369 9754 Roberts Pines, West Benitaburgh, NM 69180-7958

Phone: +522993866487

Job: Sales Executive

Hobby: Worldbuilding, Shopping, Quilting, Cooking, Homebrewing, Leather crafting, Pet

Introduction: My name is Golda Nolan II, I am a thoughtful, clever, cute, jolly, brave, powerful, splendid person who loves writing and wants to share my knowledge and understanding with you.